Pydantic递归模型深度校验36计:从无限嵌套到亿级数据的优化法则
title: Pydantic递归模型深度校验36计:从无限嵌套到亿级数据的优化法则
from pydantic import BaseModel
from typing import List, Optional
class TreeNode(BaseModel):
name: str
children: List['TreeNode'] = [] # 前向引用
# 创建7层深度树结构
root = TreeNode(name="root", children=[
TreeNode(name="L1", children=[
TreeNode(name="L2", children=[
TreeNode(name="L3")
])
])
])
class GraphNode(BaseModel):
id: str
edges: List['GraphNode'] = []
@validator('edges')
def check_cycles(cls, v, values):
visited = set()
def traverse(node, path):
if node.id in path:
raise ValueError(f"环状路径检测: {'->'.join(path)}->{node.id}")
if node.id not in visited:
visited.add(node.id)
for edge in node.edges:
traverse(edge, path + [node.id])
traverse(values['self'], [])
return v
from pydantic import Field
class User(BaseModel):
id: int
friends: List['User'] = Field(default_factory=list)
manager: Optional['User'] = None
@root_validator
def validate_relationships(cls, values):
def check_hierarchy(user: User, seen=None):
seen = seen or set()
if user.id in seen:
raise ValueError("管理关系循环")
seen.add(user.id)
if user.manager:
check_hierarchy(user.manager, seen)
check_hierarchy(values['self'])
return values
class LazyValidator(BaseModel):
data: str
_parsed: dict = None
@validator('data', pre=True)
def lazy_parse(cls, v):
# 延迟解析直到首次访问
instance = cls()
instance._parsed = json.loads(v)
return v
@root_validator
def validate_content(cls, values):
if values['_parsed'] is None:
values['_parsed'] = json.loads(values['data'])
# 执行深度校验逻辑
validate_nested(values['_parsed'], depth=10)
return values
from pydantic import validator, parse_obj_as
class ChunkedData(BaseModel):
chunks: List[str]
@validator('chunks', pre=True)
def split_data(cls, v):
if isinstance(v, str):
return [v[i:i + 1024] for i in range(0, len(v), 1024)]
return v
@root_validator
def validate_chunks(cls, values):
buffer = []
for chunk in values['chunks']:
buffer.append(parse_obj_as(DataChunk, chunk))
if len(buffer) % 100 == 0:
validate_buffer(buffer)
buffer.clear()
return values
class PipelineNode(BaseModel):
input_schema: dict
output_schema: dict
next_nodes: List['PipelineNode'] = []
@root_validator
def validate_pipeline(cls, values):
visited = set()
def check_node(node):
if id(node) in visited:
return
visited.add(id(node))
if node.output_schema != node.next_nodes[0].input_schema:
raise ValueError("节点schema不匹配")
for n in node.next_nodes:
check_node(n)
check_node(values['self'])
return values
class CompactModel(BaseModel):
class Config:
arbitrary_types_allowed = True
copy_on_model_validation = 'none'
@root_validator
def optimize_memory(cls, values):
for field in cls.__fields__:
if isinstance(values[field], list):
values[field] = tuple(values[field])
elif isinstance(values[field], dict):
values[field] = frozenset(values[field].items())
return values
class GenerativeValidator(BaseModel):
template: str
dependencies: List['GenerativeValidator'] = []
@root_validator
def check_templates(cls, values):
from jinja2 import Template, meta
parsed = Template(values['template'])
required_vars = meta.find_undeclared_variables(parsed)
def collect_deps(node: 'GenerativeValidator', seen=None):
seen = seen or set()
if id(node) in seen:
return set()
seen.add(id(node))
vars = meta.find_undeclared_variables(Template(node.template))
for dep in node.dependencies:
vars |= collect_deps(dep, seen)
return vars
available_vars = collect_deps(values['self'])
if not required_vars.issubset(available_vars):
missing = required_vars - available_vars
raise ValueError(f"缺失模板变量: {missing}")
return values
class DeltaValidator(BaseModel):
base_version: int
delta: dict
_full_data: dict = None
@root_validator
def apply_deltas(cls, values):
base = load_from_db(values['base_version'])
values['_full_data'] = apply_delta(base, values['delta'])
try:
FullDataModel(**values['_full_data'])
except ValidationError as e:
raise ValueError(f"增量应用失败: {str(e)}")
return values
错误信息 | 原因分析 | 解决方案 |
---|---|---|
RecursionError: 超过最大深度 | 未控制递归层级 | 使用迭代代替递归 |
ValidationError: 循环引用 | 对象间相互引用 | 实现路径跟踪校验 |
MemoryError: 内存溢出 | 未优化大型嵌套结构 | 应用分块校验策略 |
KeyError: 字段缺失 | 前向引用未正确定义 | 使用ForwardRef包裹类型 |
TypeError: 不可哈希类型 | 在集合中使用可变类型 | 转换为元组或冻结集合 |
评论
发表评论